What are the drivers of plant translocation outcome? A global perspective

Thomas Abeli

4th Mediterranean Plant Conservation Week Valencia 23-27 October 2023

Isoëtes malinverniana Ces. & De Not.

SUMMARY

WHY we need translocation

AIMS of translocation

DATASETS

DRIVERS of translocation outcome

WHAT'S next?

INTRODUCTION

Biodiversity policies are supposed to contribute to the conservation of species and habitats.

Species are still disappearing!

40% of world's plant species at risk of extinction (*State of the World's Plants and Fungi*).

19 plant species extinct in Europe (Abeli et al., 2021 *Nature Plants*).

360 plant species extinct globally.

nature plants

Article

https://doi.org/10.1038/s41477-022-01296-7

Selecting the best candidates for resurrecting extinct-in-the-wild plants from herbaria

INTRODUCTION

Most species will not spontaneously return in areas where they used to occur.

Transient seed bank, limited dispersal capacity, habitat fragmentation.

Thompson et al., 1997

Thompson et al., 2011

INTRODUCTION

Several species will not persist in the long run if their populations do not have a minimum viable size.

It may be necessary to: Increase the size of the remaining populations (reinforcement) or restore historical populations (reintroduction) or create new ones (introduction).

TRANSLOCATIONS

Specific aims:

- Increasing population size
- Increasing genetic diversity
- Restoring balanced sex ratio
- Restoring balanced age ratio
- Increasing the number of populations
- Creating meta-populations
- Restoring ecosystem functions
- Ecological substitution
- Anticipating effects of future threats (proactive intervention)

<u>Biological aim</u>: the establishment of a self-sustaining population.

Minimum viable population (MVP).

Some species may only rarely reproduce sexually, so the occurrence of vegetative reproduction can also be considered as a result.

Ecological Engineering 122 (2018) 112–119

Identification of success factors for the reintroduction of the critically endangered species *Eryngium viviparum* J. Gay (Apiaceae)

Pauline Rascle^a, Frédéric Bioret^a, Sylvie Magnanon^b, Erwan Glemarec^b, Catherine Gautier^b, Yvon Guillevic^c, Sébastien Gallet^a.*

Table 3

Flowering rates and new generation appearance in each site and for each transplant period (mean ± SE).

Site	e Season Mean flowering rate		Recruitment (November 2016)				Total population size		
		(summer 2016)	Mean number of seedlings	Mean number of clones from root plate	Mean number of pseudovivipary	f dones from	November 2016	June 2017	October 2017
LC	Autumn Spring Total	$\begin{array}{c} 0.5 \ \pm \ 0.1 \\ 0.7 \ \pm \ 0.1 \\ 0.6 \ \pm \ 0.1 \end{array}$	11.7 ± 3.5 33.4 ± 13 22.5 ± 6.9	0 1.8 ± 1.1 0.9 ± 0.6	$\begin{array}{c} 0.8\ \pm\ 0.7\\ 2.3\ \pm\ 1.5\\ 1.55\ \pm\ 0.85 \end{array}$		626	44	249
тс	Autumn Spring Total	$\begin{array}{rrrr} 0.8 \ \pm \ 0.04 \\ 0.5 \ \pm \ 0.1 \\ 0.6 \ \pm \ 0.06 \end{array}$	1.3 ± 0.7 8.6 ± 4 5 ± 2.2	$\begin{array}{r} 11.9 \ \pm \ 2.1 \\ 12.9 \ \pm \ 4.5 \\ 12.4 \ \pm \ 2.4 \end{array}$	$\begin{array}{r} 23.9 \ \pm \ 8.15 \\ 23.7 \ \pm \ 7.8 \\ 23.8 \ \pm \ 5.5 \end{array}$		1095	755	1443

Aims:

- In the short-term: survival of transplanted individuals.

- In the medium-term: reproduction attempts.

- In the long-term: new generation.

Plant Ecol (2016) 217:193–206 DOI 10.1007/s11258-015-0524-2

🔵 CrossMark

Acquiring baseline information for successful plant translocations when there is no time to lose: the case of the neglected Critically Endangered *Narcissus cavanillesii* (Amaryllidaceae)

David Draper Munt · Isabel Marques · José M. Iriondo

Aims:

- In the short-term: survival of transplanted individuals.

- In the medium-term: reproduction attempts.

- In the long-term: new generation.

TRANSLOCATION OUTCOME

Plant Ecology (2023) 224:791-802 https://doi.org/10.1007/s11258-023-01311-7

Monitoring time of conservation-driven and mitigation-driven plant translocations in Europe

Margaux Julien^{1,2} • Bertrand Schatz¹ • Alexandre Robert³ • Bruno Colas⁴

Key question: WHAT INFLUENCES A TRANSLOCATION OUTCOME?

# translocation 🗸	# plant tax 🗸	Geographic scop	Source 🔽
249	172	Global	Godefroid et al. (2011)
949	849	Global	Godefroid & Vanderborght (2011)
304	128	Global	Dalrymple et al. (2011)
214	205	Global	Corli et al. (2023)
222	154	China	Liu et al. (2015)
1001	376	Australia	Silcock et al. (2019)
665	-	Australia	Whitehead et al. (2023)
76	50	Australia	Monks et al. (2023)
275	127	US	Bellis et al. (2023)
185	117	Italy	Abeli et al. (2021); D'Agostino et al. Unpubl.
436	193	France	Diallo et al. (2023); Julien et al. (2023)
836	572	Mediterranean	Fenu et al. (2023)

Survival of transplants declines with time.

Drivers of outcome included:

- source population characteristics
- number of released plants
- site protection
- pre- and post-release site management

Table 1

Percentage variation in reintroduction success explained by explanatory variables and level of significance (Monte Carlo test, 999 permutations). Only 24 trials could be included in this analysis.

Explanatory variable	Variance explained by single variable (%)	Cumulative variance explained (%)	P- level
Plants from diverse source populations	21	21	0.007
Knowledge of cause of decline/extinction	9	30	0.096
Reducing competition by removing surrounding plants	16	46	0.008
Protected area	12	58	0.005
Fencing of the reintroduction area	6	64	0.061
Knowledge of environmental characteristics	2	66	0.310
Project type: reintroduction/ reinforcement	2	68	0.498
Number of individuals reintroduced	0	68	0.857
Burning before reintroduction	1	69	0.672
Material type: seeds	0	69	0.859

Godefroid et al. (2011)

The highest the number of released propagules, the highest the survival percentage.

The highest the number of released propagules, the highest the survival percentage.

Silcock et al., 2019

The highest the number of released propagules, the highest the probability of recruitment.

Silcock et al., 2019

To mix or not to mix?

Godefroid et al., 2011

D'Agostino et al., Unpub.

Source population trend

Best performance is usually achieved when using older propagules.

Site preparation and aftercare also contribute to increased survival in the short-term.

	Contents lists available at ScienceDirect	BIOLOGICAL CONSERVATION
	Biological Conservation	United and a set of the set of th
ISEVIER	journal homepage: www.elsevier.com/locate/biocon	and the second

CrossMark

Sabine Tischew^{a,*}, Florian Kommraus^a, Leonie K. Fischer^{b,c}, Ingo Kowarik^{b,c}

endangered grassland species Jurinea cyanoides

Godefroid et al. (2011)

AFTERCARE

Whitehead et al., 2023

Life form affects translocation outcome

Bellis et al., 2023

Habitat also affects translocation outcome

D'Agostino et al. Unpub.

Whitehead et al. 2023

Do funds available affect translocation outcome?

WHAT'S NEXT?

New European Database in progress, > 3000 cases https://www.conserveplants.eu/en/

More data on standardised site preparation and aftercare

More data on standardised categories of life form and habitats

