MODELLING INVASION RISK MAPS FOR ALIEN PLANTS

Application in Mediterranean sea cliffs with endemic species

Arnau Bosch-Guiu, Roi Rodríguez-González, Neus Nualart, Carlos Gómez-Bellver, Neus Ibáñez, Roser Melero, Sònia Garcia & Jordi López-Pujol

RISKMAPR

 Mapping tool that allows land managers to identify priority areas with limited data to monitor and quickly manage weed invasions

apear9/ riskmapr	Reveal 27 Fear 31 / Loome 7 April 28 / Dots BUILDOR 2020 2020 2020 10 / RESEARCH ARTICLE Report Folds
Code for riskmapr apps for invasive weed risk mapping	Inset G. Freesen ² II Alan R. Pearse ¹² II Grant Hamilton ²
At 2 O O ☆ 11 ♥ 2 Ontributors Issues Stars Forks	Encarachive Intel Interprets to bottle tagkt interprets/or. Intel Interprets to bottle tagkt interprets/or. Interprets/or and
Jens G. Froese ¹ Alan R. Pearse ^{1,2} Grant Hamilton ¹	format time Coupsing oursy will be unclude (Scherbergele and Bull and Scherbergele For containment and Neutral analysisming (Scherbergele and Scherbergele and Scherbergele and word calibration from additude interveloping-based addition and block for the scherbergele (Scherbergele and Scherbergele and Scherbergele and Scherbergele and Scherbergele profilement the dispersion of scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and additional and scherbergele and scherbergele and scherbergele and 4. We developed a myorid specific and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and additional and scherbergele and scherbergele and scherbergele and scherbergele and additional and scherbergele and scherbergele and scherbergele and scherbergele and additional and scherbergele and scherbergele and scherbergele and scherbergele and additional and scherbergele and scherbergele and scherbergele and scherbergele and additional additional and scherbergele and scherbergele and scherbergele and scherbergele and additional additional and scherbergele and scherbergele and scherbergele and scherbergele and additional additional and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and additional additional and scherbergele and scherbergele and scherbergele and scherbergele and scherbergele and additional additional additionadditional additional additional additional additional add
	in all maps can be used to branch inducements or insperse sparsity spatial trade- alized by in the factors and processes driving welly used investors. KXYY 00 EDS Bapedan redenk, encoding include weaks, incursion response, inspendential, new notice plants, spatial model, validable; scoughbility

🖲 Canik he spele

INVASION RISK MODELING

Theoretical models of 33 invasive species

- 1. Identify risk factors
- 2. Build a conceptual model
- 3. Obtain spatial data and calibrate the model

B Risk maps with "riskmapr": Land management

- 4. Link spatial data
- 5. Prepare propagule supply and dispersal models
- 6. Prepare risk maps with "RISKMAPR"

THEORETICAL MODELS

33 INVASIVE SPECIES

RISK FACTORS AND SPATIAL REPRESENTATION

Factor de risc & definició	Mapa utilitzat	Classificació dels atributs espacials	Valor de		
	-		risc	_	_
Pendent Si els fragments són capaços d'establir-se en diferents vessants	Mapa derivat del Model d'Elevació del Terreny de Catalunya 5x5 metres (MET- 5) v1	Òptim: 25 – 50	50 100 50 25		
Si el drenatge del sòl dona suport al creixement i la supervivència de les plantes	Inclòs al mapa de sòls de Catalunya a escala 1:250.000 (MSC250M).	Apte: Sols ben drenats, ràpidament drenats i molt ràpidament drenats Poc apte: Imperfectament drenats No apte: Saturats	100 50 0	Establiment	
Tipus d'usos del sòl Si els usos del sòl admeten el reclutament dens de plàntules	Mapa d'Usos del Sòl de Catalunya (MSCS) v1.0 – 2018 (ICGC)	 Principal habitat: Conreus en transformació, roquissars i congestes Ben tolerat: Matollar, sòl nu forestal Tolerat: Boscos clars d'esclerofil·les i laurifolis, boscos clars d'aciculifolis, prats i herbassars, etc. Habitat inadequat: Altres conreus llenyosos, boscos clars de caducifolis, platges, vinyes, zones verdes, etc No habitat: basses; bosc de ribera; boscos densos de caducifolis, planifolis; casc urbà; cursos d'aigua; etc. 	100 75 50 25 0	ment	-
Temperatura mínima Si les plantes estan exposades a temperatures adverses durant el mes més fred	Fick, S.E. and R.J. Hijmans, 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302-4315.	Òptim: >3°C Apte: ≤3°C i >-5°C No apte: ≤ -5°C	100 50 0	Persistència	,
Presència de Dactylopius opuntiae Si les inoculacions i la presència de Dactylopius opuntiae poden empitjorar el creixement i la supervivència de les plantes	Llocs d'inoculació de Dactylopius opuntiae a Opuntia ficus-indica i identificacions de D.	Distància a un punt d'inoculació de <i>D. opuntiae</i> o observació d'una planta afectada amb <i>D. opuntiae</i> Poc apte: 0 - 50 m Moderada: 50 - 500 m Apte: 500 - 1000 m Molt apte: >1000 m	25 50 75 100	tència	
Subministrament de propàguls Quantitat de segments potencialment dispersats de poblacions font	Mapa derivat de les observacions de voluntaris i observadors a la plataforma iNaturalist	Àrea de la població amb individus madurs Molt alt: ≥20 m2 Alt: 10-20 m2 Moderat: 1-10 m2 Baix: ≤1 m2; poblacions d'immadurs; poblacions de senescents	100 75 50 25		
poblacions font per animals terrestres i voladors	observadors a la plataforma	Distància euclidiana radial calculada des de la font més propera Òptim: 0 a 200 m Moderat: 200 a 750 m Poc adecuat: 750 a 2250 m Inadecuat: > 2250 m	100 50 25 0	Dispersió	
arribar de possibles fonts de	Mapa derivat del Mapa d'Usos del Sòl de Catalunya (MSCS) v1.0 – 2018 (ICGC)	Distància de possibles fonts de dispersió antropogèniques com jardins privats o àrees particulars. Òptim: 0 a 10 m Moderat: 10 a 20 m Poc adequat: 20 a 50 m Inadequat: >50 m	100 50 25 0		

33 CALIBRATED INVASIVE PLANT MODELS

 The aim of the LIFE medCLIFFS project is to prepare and calibrate the models for the 33 invasive plants targeted by the project

	×										
Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació
Acacia dealbata	Agave ameriacana	Ailanthus altissima	Araujia sericifera	Disphyma crassifolium	D. floribundum	Einadia nutans	Fallopia baldschuanica	Opuntia ficus-indica	Opuntia linguiformis	Opuntia stricta	Oxalis pes-caprae
Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació	Informació
Arundo donax	C. acinaciformis	Carpobrotus edulis	Cenchrus longisetus	Gazania rigens	Ipomcea indica	Kalanchoe tubiflora	Kalanchoe x houghtonii	Phyllostachys aurea	Pittosporum tobira	Senecio angulatus	Senecio inaequidens
Informació Cenchrus setaceus	Informació Cylindropuntia paliida	Informació Delairea odorata	Informació Dimorphoteca eklonis	Informació Lonicera Japonica	Informació Matthiola incana	Informació M. cordifolium	Informació Opuntia aurantiaca	Informació Senecio pterophorus	VEGEU LA LLISTA COMPLETA		

33 CALIBRATED INVASIVE PLANT MODELS

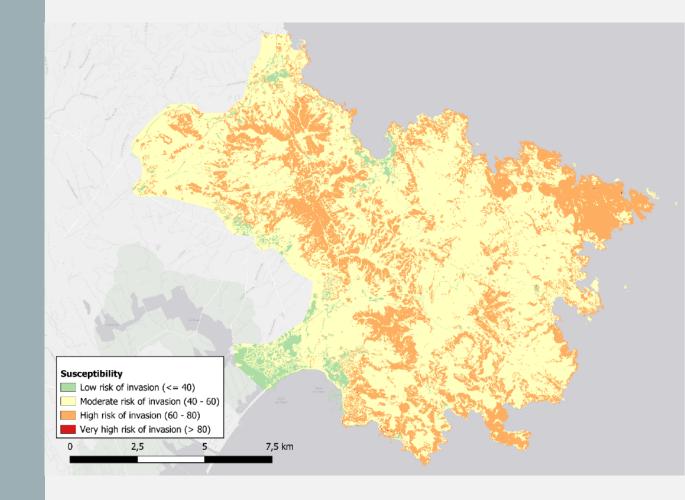
- The aim of the LIFE medCLIFFS project is to prepare and calibrate the models for the 33 invasive plants targeted by the project
- Most time-consumig process while applying RISKMAPR
- These models can be extrapolated to other regions of the Mediterranean (possibility of making adjustments if needed)
- We will create guidelines on how to use and modify these models, with recommendations on where to obtain the necessary spatial proxies

Example: Opuntia ficus-

				indica		
		Risk factor & definition	Map used	maica	fication of spatial attributes	Risk value
		Slope If fragments are able to be established on different slopes	Map derived from the Terrain Elevation Model of Catalonia 5x5 meters (MET-5) v1	Suitable : 0-25 Optimum : 25 – 50 Suitable : 50-75 Very unfit : >75		50 100 50 25
		Soil humidity If soil drainage supports plant growth and survival	Included in the soil map of Catalonia at a scale of 1:250,000 (MSC250M).	Suitable : Well-drained, quickly drained a Unsuitable : Imperfectly drained Not suitable : Saturated	and very quickly drained soils	100 50 0
Su ita bil	me ' nt	Types of land uses If land use support dense seedling recruitment	Land Use Map of Catalonia (MSCS) v1.0 – 2018 (ICGC)	grasslands, etc. Inappropriate habitat : Other woody cro	ocky areas and congested areas ylls and laurifolias, clear forests of aciculifolias, meadows and ops, clear deciduous forests, beaches, vineyards, green areas, etc. se forests of deciduous, planifolia; urban helmet; watercourses; etc.	100 75 50 25 0
ity		Minimum temperature If plants are exposed to adverse temperatures during the coldest month	Fick , SE and RJ Hijmans , 2017. WorldClim 2: new 1km spatial resolution weather surfaces for global land areas _ International Journal of Climatology 37 (12): 4302-4315.	Optimum : $>3^{\circ}C$ Suitable : $\leq 3^{\circ}C$ and $>-5^{\circ}C$ Not suitable : $\leq -5^{\circ}C$		100 50 0
	enc	Presence of <i>Dactylopius opuntia</i> If inoculations and presence of Dactylopius opuntiae can affect plant growth and survival	Dactylopius inoculation sites opuntiae to Opuntia ficus-indica and identifications of D. opuntiae by volunteers on the iNaturalist site	D. opuntiae inoculation point or observat Not suitable : 0 - 50 m Moderate : 50 - 500 m Suitable : 500 - 1000 m Very suitable : >1000 m	on of a plant affected with <i>D. opuntiae</i>	25 50 75 100
		Supply of propagules Number of potentially dispersed segments of source infestation	Map derived from the observations of volunteers and observers on the iNaturalist platform	Area of the population with mature individent $Very high : \ge 20 m2$ Height : 10-20 m2 Moderate : 1-10 m2 Low : $\le 1 m2$; populations of immatures of	r senescent	100 75 50 25
		Animal dispersal (epi -/ endozoochory) Frequency and density of dispersed segments of source infestations by terrestrial and flying animals	Map derived from the observations of volunteers and observers on the iNaturalist platform	Radial Euclidean distance calculated from Optimum : 0 to 200 m Moderate : 200 to 750 m Not suitable : 750 to 2250 m Unsuitable : > 2250 m	the nearest source	100 50 25 0
		Horticultural dispersal and gardening How many segments can to arrive of possible sources of anthropogenic dispersion such as private gardens or private areas	Map derived from the Land Use Map of Catalonia (MSCS) v1.0 – 2018 (ICGC)	Distance from possible sources of anthrop Optimum : 0 to 10 m Moderate : 10 to 20 m Not suitable : 20 to 50 m Inappropriate : >50 m	ogenic dispersion such as private gardens or private areas.	100 50 25 0

Su sce pti bil ity

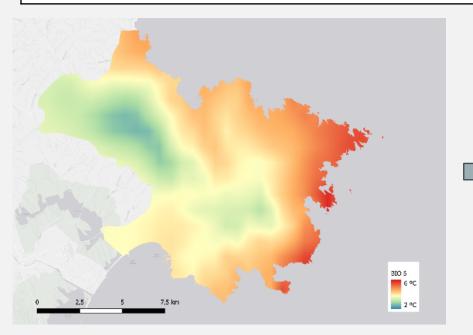
STEP 3. OBTAIN SPATIAL DATA AND CALIBRATE THE MODEL

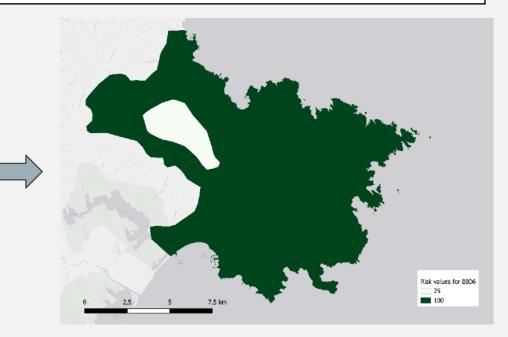

For each identified risk factor:

- Search spatial proxies represent them
- A classification is assigned, composed of several discrete and mutually exclusive states
- Each discrete state is assigned a risk value [0 to 100]

РГ	Risk factor & definition		Classification of spatial attributes in discrete states	Risk value
AM	Minimum temperature	BIO6 = Minimum	Optimum: >3°C	100
	If the plants are exposed to adverse minimum temperatures during the coldest	temperature of the coldest month	Suitable: $\leq 3^{\circ}$ C and $> -5^{\circ}$ C	50
	month of the year		Not suitable: ≤ -5°C	0

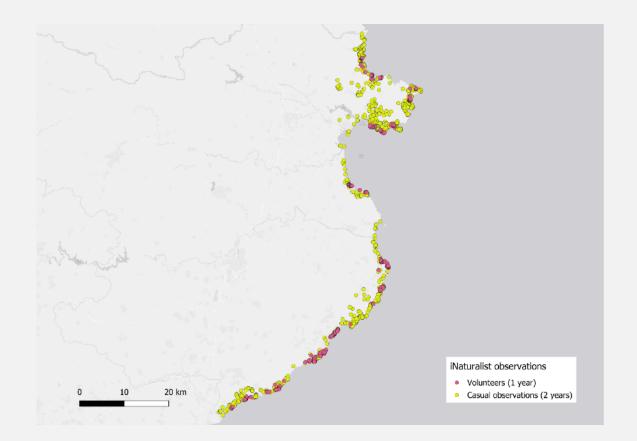
RISK MAPS

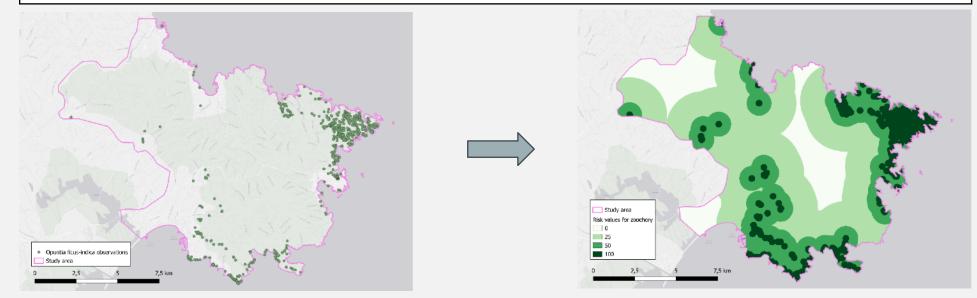

LAND MANAGEMENT WITH RISKMAPR



STEP 4. LINK SPATIAL DATA

ш	
Δ	
\geq	
7	
\mathbf{S}	
\square	
XAM	


Risk factor & definition		Classification of spatial attributes in discrete states	Risk value
Minimum temperature	BIO6 = Minimum	Optimum: >3°C	100
If the plants are exposed to adverse minimum temperatures during the coldest	temperature of the coldest month	Suitable: $\leq 3^{\circ}$ C and $> -5^{\circ}$ C	50
month of the year		Not suitable: ≤ -5°C	0


STEP 5. PROPAGULE SUPPLY AND DISPERSAL MODELS

- To create the propagule pressure maps:
 - Supply of propagules
 - Dispersal over short or long distances (animals, wind, water, etc.)
- "Riskmapr" features a functionality to generate propagation and dispersion pressure maps using species location data and additional information
- Data from a volunteer network and casual observations collected via the iNaturalist provides up-to-date data on the presence of invasive plants

STEP 5. PROPAGULE SUPPLY AND DISPERSAL MODELS

	Risk factor & definition	Spatial proxy	Classification of spatial attributes in discrete states	Risk value
EXAMI	<i>Animal dispersal (epi- / endozoochory)</i> Frequency and density of dispersed	Map derived from the observations of	Radial Euclidean distance calculated from the nearest source	
Ш	segments of source populations by terrestrial and flying animals	volunteers and observers on the iNaturalist platform	Optimum : 0 to 200 m Moderate : 200 to 750 m Not suitable : 750 to 2250 m	100 75 25
			Unsuitable : > 2250 m	0

STEP 6. CREATE RISK MAPS WITH " RISKMAPR "

Rapid weed riskmapr - susceptibility model

Upload spatial proxies for risk factors (establishment) (.tif extension, allows multiple)

Browse... No file selected

Select spatial proxies for all identified risk factors affecting plant establishment at once and click 'Open'. Files are automatically uploaded in alphabetical order. Upload limit is 50MB, but app functionality has only been confirmed for total upload sizes < 15MB.

Risk factor weights (establishment)

Enter numerical weights for all identified risk factors affecting plant establishment. Weights must equal '1', '2' or '3', be separated by commas and ordered alphabetically by spatial proxy name.

Standard deviation (establishment)

15

Enter the standard deviation used for computing the CPT of plant establishment from its weighted risk factors. The default is '15'. This may be changed to any reasonable value in the range [0.1,100] where appropriate.

Upload spatial proxies for risk factors (persistence) (.tif extension, allows multiple)

Browse No file selecte

Select spatial proxies for all identified risk factors affecting plant persistence at once and click 'Open'. For details, see above.

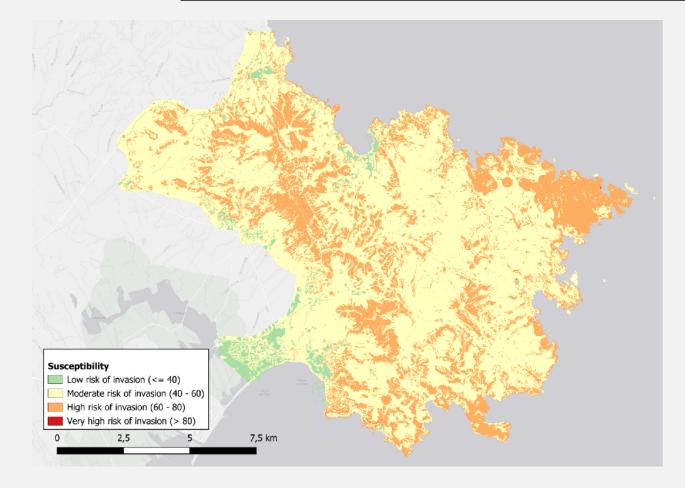
Risk factor weights (persistence)

Enter numerical weights for all identified risk factors affecting plant persistence. For details, see above.

Standard deviation (persistence)

15

Enter the standard deviation used for computing the CPT of plant persistence. For details, see above.

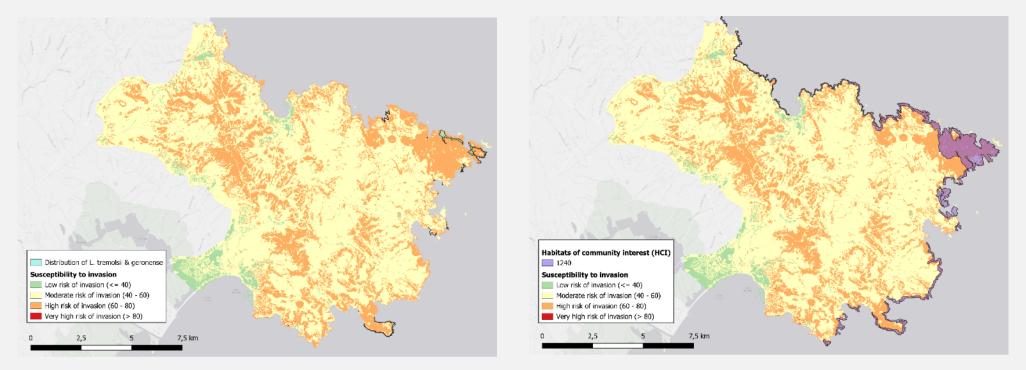

expected values), and uncertainty maps for each (the standard deviations) This should take no longer than 1-2 minutes, depending on the size of spatial proxies. Once completed, the risk map is displayed on the right-hand panel.

- Use the RISKMAPR application for the invasive plant (ex: *O. ficus-indica*)
- Inputs:
 - a. Maps of each risk factor associated with the models of each plant
 - b. Weighting of risk factors [1,3]
 - c. Standard Deviations (SD)

• Outputs:

- a. Concept map of the model
- b. "Suitability" and "Susceptibility to Invasion" Index Maps
- c. Uncertainty maps of for the two maps above

RESULTS RISKMAPR



Susceptibility of the territory to an invasion (ex: *Opuntia ficus-indica*)

- Know the state and general risk of invasion by an invasive plant
- Useful for predicting where the invasive plant will spread
- Where to focus efforts to eradicate or contain the invasive species

PRACTICAL FUNCTION OF RISK MAPS

 Overlapping data on the distribution of species or habitats that want to be protected to find the priority areas for eradication or containment

CONCLUSIONS

- The results you have seen are preliminary (limited study area and species in an advanced invasive state)
- The use of citizen science has potential to target larger areas and a wider range of species
- The application is an innovative tool that allows to:
 - Balance ecological complexity with the practical needs of land managers
 - Minimize long-term cost management and impacts

THANK YOU

If you want more information about our project:

www.lifemedcliffs.org

• Or reach us to:

info.lifemedcliffs@csic.es

arnau.bosch@csic.es

