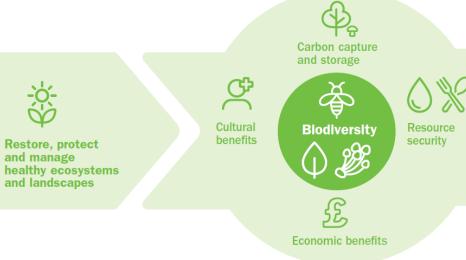


Towards a new participative approach to the conservation of Mediterranean Wild Edible Plants


Benedetta Gori^{1,2,3,4}, Marco Porceddu^{1,3,4}, Tiziana Ulian², Gianluigi Bacchetta^{1,3,4}

Background

• The collection and consumption of wild edible plants (WEPs), also known as foraging or phytoalimurgy, have historically characterized the culture of Mediterranean populations.

Sustainable

well-being and

livelihoods, improved

increased resilience

- Significant changes in food systems and markets in recent decades have led to the progressive abandonment of this practice and loss of Traditional Ecological Knowledge (TEK), along with the increasing degradation of the natural habitats where WEPs are usually found.
- Today, more 2 out of 5 plant species are at risk of extinction (Kew, 2023). The concept of "conservation through use" argues that biodiversity conservation can and should be promoted through the utilization of wild natural resources.

Contents lists available at ScienceDirect

Ecological Economics

MDPI

journal homepage: www.elsevier.com/locate/ecolecon

From famine foods to delicatessen: Interpreting trends in the use of wild edible plants through cultural ecosystem services

Victoria Reyes-García a,b,*, Gorka Menendez-Baceta c, Laura Aceituno-Mata c, Rufino Acosta-Naranjo d, Laura Calvet-Mir b,e, Pablo Domínguez b, Teresa Garnatje f, Erik Gómez-Baggethun b,g, Manuel Molina-Bustamante ^c, Marta Molina ^d, Ramón Rodríguez-Franco ^d, Ginesta Serrasolses ^h, Joan Vallès h, Manuel Pardo-de-Santayana c

Born to Eat Wild: An Integrated Conservation Approach to Secure Wild Food Plants for Food **Security and Nutrition**

Teresa Borelli 1,* Danny Hunter 1 Ronwen Powell 2, Tiziana Ulian 3, Efisio Mattana 3, Céline Termote 10, Lukas Pawera 4,50, Daniela Beltrame 60, Daniela Penafiel 7,80, Ayfer Tan 9, Mary Taylor 10 and Johannes Engels 100

nature

plants

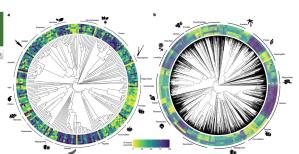
frontiers | Frontiers in Sustainable Food Systems

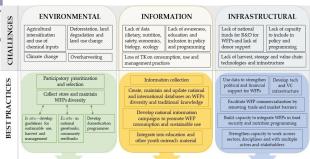
Wild leafy vegetables: A potential source for a traditional Mediterranean food from Lebanon

Safaa Baydoun^{1*}, Nizar Hani^{2,3}, Hatem Nasser², Tiziana Ulian⁴ and Nelly Arnold-Apostolides²

REVIEW ARTICLE 🗈 Open Access 💿 👣

Unlocking plant resources to support food security and promote sustainable agriculture


Tiziana Ulian 🔀 Mauricio Diazgranados, Samuel Pironon, Stefano Padulosi, Udayangani Liu, Lee Davies, Melanie-Jayne R. Howes, James S. Borrell, Jan Ondo, Oscar A. Pérez-Escobar, Suzanne Sharrock, Philippa Ryan, Danny Hunter, Mark A. Lee, Charles Barstow, Łukasz Łuczaj, Andrea Pieroni, Rodrigo Cámara-Leret, Arshiya Noorani, Chikelu Mba, Rémi Nono Womdim, Hafiz Muminjanov, Alexandre Antonelli, Hugh W. Pritchard, Efisio Mattana ... See fewer authors A


ARTICLES https://doi.org/10.1038/s41477-022-01100-


Global plant diversity as a reservoir of micronutrients for humanity

Aoife Cantwell-Jones ^{⊙1™}, Jenny Ball², David Collar³, Mauricio Diazgranados², Ruben Douglas², Félix Forest², Julie Hawkins 64, Melanie-Jayne R. Howes 62, Tiziana Ulian², Bapu Vaitla and Samuel Pironon ©2⊠

CONSERVATION AND SUSTAINABLE USE OF WILD FOOD PLANTS

Why (Mediterranean) WEPs?

- Promotion of diet diversification, nutritional security, and food sovereignty.
- Climate-smart: high resilience and adaptability to environmental changes.
- Establishment of new sustainable livelihoods.
- Potential alternative to more destructive uses of natural ecosystems.
- Rooted in local cultural identity and traditional practices → bio-cultural conservation.

Objectives

Mediterranean wild edible flora. Identification of

climate-change scenarios. Highlight their potential for

Germination tests in the Sardinian Germoplasm Bank (BG-SAR)

Methods

Combination of international open-source datasets & extensive literature review (Scopus)

Geopoints retrieval (GBIF) and cleaning. Spatial analysis & biodiversity quantifications (ArcGIS pro)

Ethnobotanical investigation, selection of priority species

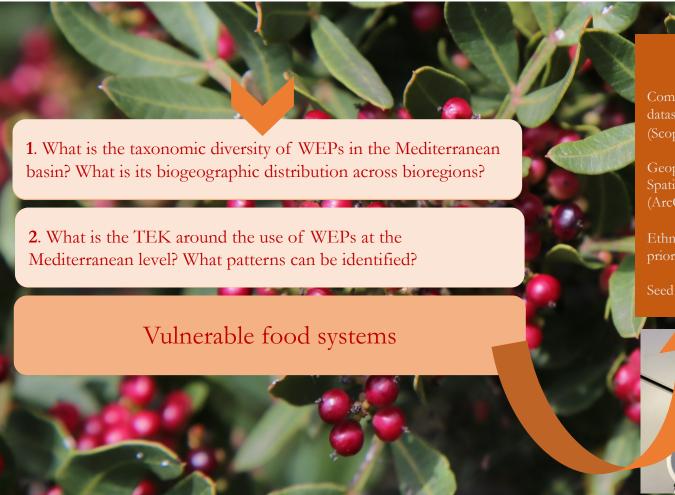
Seed collection, germination test, modelling

Objectives

Creation of the first comprehensive dataset for the Mediterranean wild edible flora. Identification of knowledge gaps

Mapping of species distribution across Mediterranear countries and bioregions. Identification of "food biodiversity hotspots" and areas of conservation priority.

Understand species' regeneration capacity under various climate-change scenarios. Highlight their potential for propagation, domestication, and crop improvement



Germination tests in the Sardinian Germoplasm Bank (BG-SAR)

Methods

Combination of international open-source datasets & extensive literature review (Scopus)

Geopoints retrieval (GBIF) and cleaning. Spatial analysis & biodiversity quantifications (ArcGIS pro)

Ethnobotanical investigation, selection of priority species

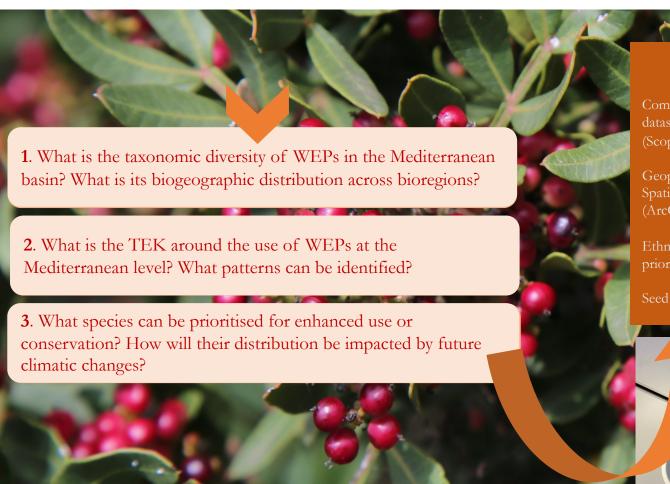
Seed collection, germination test, modelling

Objectives

Creation of the first comprehensive dataset for the Mediterranean wild edible flora. Identification of knowledge gaps

Mapping of species distribution across Mediterranear countries and bioregions. Identification of "food biodiversity hotspots" and areas of conservation priority.

Understand species' regeneration capacity under various climate-change scenarios. Highlight their potential for propagation, domestication, and crop improvement



Germination tests in the Sardinian Germoplasm Bank (BG-SAR)

Methods

Combination of international open-source datasets & extensive literature review (Scopus)

Geopoints retrieval (GBIF) and cleaning. Spatial analysis & biodiversity quantifications (ArcGIS pro)

Ethnobotanical investigation, selection of priority species

Seed collection, germination test, modelling

Objectives

Creation of the first comprehensive dataset for the Mediterranean wild edible flora. Identification of knowledge gaps

Mapping of species distribution across Mediterranear countries and bioregions. Identification of "food biodiversity hotspots" and areas of conservation priority.

Understand species' regeneration capacity under various climate-change scenarios. Highlight their potential for propagation, domestication, and crop improvement

Germination tests in the Sardinian Germoplasm Bank (BG-SAR)

Literature review

Database Plant Search Page:

Edible, Medicinal and other uses of over 8 000 plants

World Checklist of Useful Plant Species

2020

Plants for a Future
Edible & useful plants for a healthier world

Diazgranados, M., Allkin, B., Black, N., Cámara-Leret, R., Canteiro, C., Carretero, J., al. (2020). World checklist of useful plant species.

- Databases searched: Scopus, Scholar, Web of Science (Elsevier, Wiley, JSTOR, EBSCO, Springer, Taylor & Frances + Grey literature)
- Period of publication: 1950 Present
- Countries: Italy, Greece, Albania, Bosnia, Montenegro, Croatia, Slovenia, France, Spain, Portugal, Morocco, Turkey, Cyprus, Syria, Lebanon, Israel, Jordan, Palestine, Egypt, Libya, Tunisia, Algeria
- Disciplines: Ethnobotany, Physiology, Ecology, Genomics, Agriculture, History, Anthropology, Archaeobotany
- Nature of the studies: Universities, Research institutions, private companies, NGOs

Search results:

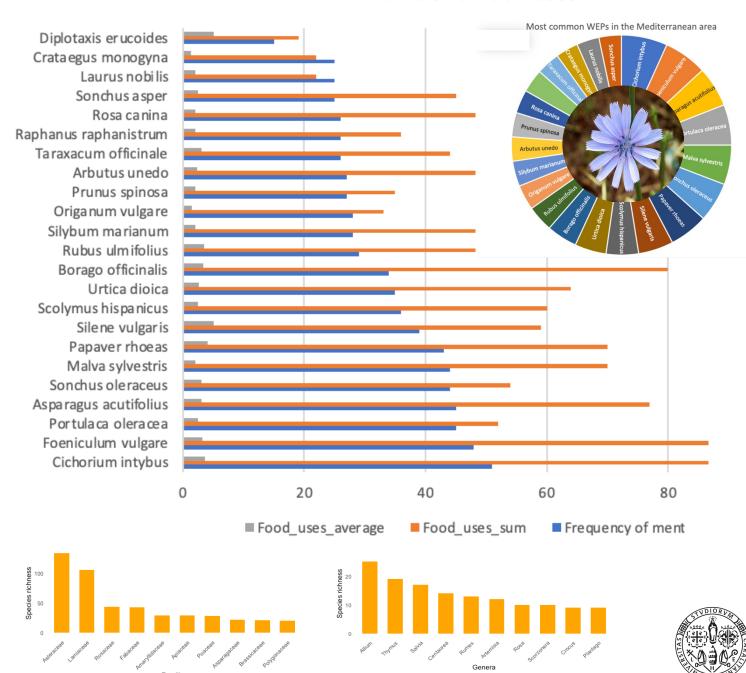
- Prelim. results: 2.011
- Discarded (duplicates & abstract): 1.551
 - Final results: 460

	Species_name	Author_name	Subspecific_epithet	Vernacular_name	Country	Specitif_place Plant_part	Food_detail	Medicinal_u	Detail	Reference	CWR	WEP	Publication_type
3738	Capparis spinosa	L.		Chiapparo	Italy	Cava de tirreni a bulbs	used to aron	NA	NA	Mautone, N	l NA	Yes	Ethnobotany
3739	Achillea millefolium	L.		Troneto	Italy	Cava de tirreni a inflorescenc	used for prep	Medicinal	theinhalatio	Mautone, N	l NA	Yes	Ethnobotany
3740	Artemisia absinthium	L.		Nascienzo	Italy	Cava de tirreni a leaves	used for prep	Medicinal	decoction is	Mautone, N	l NA	Yes	Ethnobotany
3741	Cichorium intybus	L.		Cicoria	Italy	Cava de tirreni a aerial parts	cooked in pr	Medicinal	Laxative and	Mautone, N	l NA	Yes	Ethnobotany
3742	Condrilla juncea	L.		Lattarole	Italy	Cava de tirreni a aerial parts	cooked in pr	NA	NA	Mautone, N	l NA	Yes	Ethnobotany
3743	Crepis vesicaria	L.		Lattarole	Italy	Cava de tirreni a aerial parts	cooked in pr	NA	NA	Mautone, N	l NA	Yes	Ethnobotany
3744	Helminthotheca echioides	(L.) Holub		Lattarole	Italy	Cava de tirreni a aerial parts	cooked in pr	NA	NA	Mautone, N	l NA	Yes	Ethnobotany
3745	Reichardia picroides	(L.) Roth		Lattarole	Italy	Cava de tirreni a aerial parts	cooked in pr	NA	NA	Mautone, N	l NA	Yes	Ethnobotary
3746	Silybum marianum	(L.) Gaertn		Cardone	Italy	Cava de tirreni a flowers	cooked in pr	NA	NA	Mautone, N	l NA		nobotany
3747	Sonchus oleraceus	(L.) L.		Stracciacannaron	e Italy	Cava de tirreni a aerial parts	cooked in pr	NA	NA	Mautone, N	l NA		Phnobotany
3748	Taraxacum campylodes	G.E. Haglund.		Cicoria sarvatica	Italy	Cava de tirreni a leaves	uncooked in	NA	NA	Mautone, N	l NA		Ecnnobotany
3749	Capsella bursa-pastoris	(L.) Medik.		Zeppolelle sarvati	Italy	Cava de tirreni a leaves	cooked in pr	NA	NA	Mautone, N	l NA		ED®bot
3750	Nasturtium officinale	R.Br		NA	Italy	Cava de tirreni a leaves	in salads or c	NA	NA	Mautone, N	l NA	IUCN	any BGCI
3751	Arbutus unedo	L.		Sovera pelosa	Italy	Cava de tirreni a fruits	they were ea	Medicinal	decoction of	Mautone, N	I NA		Stinootanypla
3752	Castanea sativa	Mill.		Castagno	Italy	Cava de tirreni a seeds	to prepare ca	NA	NA	Mautone, N	, NA	Yes	Ethnohotany -
3753	Mentha x piperita	L.		Armenta	Italy	Cava de tirreni a leaves	as a main ing	Medicinal	used in the p	Mautone, N	1 NA	Yes	EthnobotanySea
3754	Mentha x rotundifolia	(L.) Huds		Armenta	Italy	Cava de tirreni a leaves	as a main ing	Medicinal	used in the p	Mautone, N	1 NA	+ In situ	a & Exesitu
3755	Mentha spicata	L.		Armenta	Italy	Cava de tirreni a leaves	as a main ing	Medicinal	used in the p	Mautone, N	1 NA		
3756	Laurus nobilis	L.		Lauro	Italy	Cava de tirreni a leaves	used as an ar	Medicinal	used in the p	Mautone, N	1 NA	conserv	ation data
3757	Ceratonia siliqua	L.		Sciuscella	Italy	Cava de tirreni a fruits	food for chil	Medicinal	the fresh frui	Mautone, N	1 NA	ADJET,	V; BGCI
3758	Asparagus acutifolius	L.		Spalice	Italy	Cava de tirreni a aerial parts	cooked with	Medicinal	eaten fresh, t	Mautone, N	1 NA	(LOC)	Ethnobotany
3759	Ruscus aculeatus	L.		Scacciasurece	Italy	Cava de tirreni a aerial parts	in salads or v	NA	NA	Mautone, N	1 NA	Plant	Search) tany
3760	Myrtus communis	L.		Murtella	Italy	Cava de tirreni a fruits	Used to prep	Medicinal	leaves used t	Mautone, N	1 NA	Yes	Ethnobotany
3761	Fraxinus ornus	L.		Uorn	Italy	Cava de tirreni a bark	a water mace	Medicinal	laxative, use	Mautone, N	1 NA	Yes	Ethnobotany
3762	Plantago lanceolata	L.		Cincheniervi	Italy	Cava de tirreni a leaves	cooked in pr	Medicinal	crushed leav	Mautone, N	I, NA	Yes	Ethnobotany
3763	Plantago major	L.		Cincheniervi	Italy	Cava de tirreni a leaves	cooked in pr	Medicinal	crushed leav	Mautone, N	I NA	Yes	Ethnobotany
3764	Portulaca oleracea	L.		Pucchiacchella, Er	Italy	Cava de tirreni a aerial parts	eaten in sala	NA	NA	Mautone, N	l NA	Yes	Ethnobotany

MedWEP Dataset & analysis

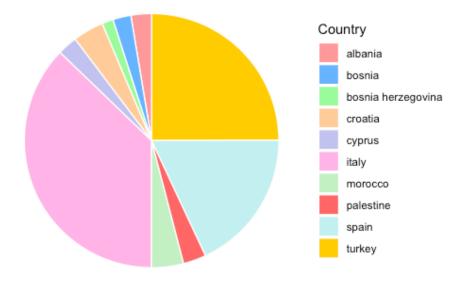
Taxonomic analysis: What does WEP diversity in the Mediterranean look like? What are the most species-rich families and genera? – Around 10.000 accessions, 2900 unique species. Richest families: Asteraceae, Lamiaceae, Rosaceae, Fabaceae.

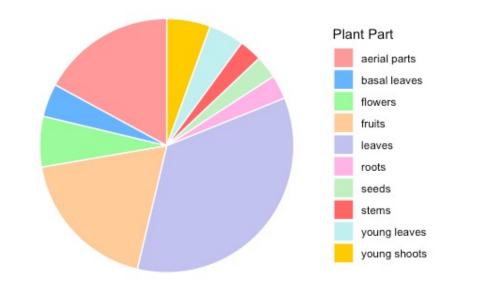
Ethnobotanical analysis: What are the most used species (frequency of mention)?; What are the most versatile? What's the overlap between food and medicine?


Cichorium, Foeniculu, Sonchus, Portulaca, Silene, Urtica.

Preliminary results

- Most utilized part of MedWEP are leaves, followed by fruits and aerial parts..
- Countries listing the highest number of studies are Italy, Spain and Turkey. Most significative knowledge gaps come from Egypt, Lybia, e Syria.
- Nearly 40% of all MedWEP can be eaten raw. The restant 60% needs prior cooking.
- 25.5% of species are consumed as beverages (23.5% non-alcoholic, 9.5% alcoholic)
- Nearly 10% of the species is eaten with/in pasta rice dishes
- More than 10% of the species is eaten with eggs or in omelettes


Number of food uses


Preliminary results

- Most utilized part of MedWEP are leaves, followed by fruits and aerial parts..
- Countries listing the highest number of studies are Italy, Spain and Turkey. Most significative knowledge gaps come from Egypt, Lybia, e Syria.
- Nearly 40% of all MedWEP can be eaten raw. The restant 60% needs prior cooking.
- 25.5% of species are consumed as beverages (23.5% non-alcoholic, 9.5% alcoholic)
- Nearly 10% of the species is eaten with/in pasta rice dishes
- More than 10% of the species is eaten with eggs or in omelettes

Top 10 Most Frequently Mentioned Countries

Top 10 Most Frequently Mentioned Plant Parts

Restoring the traditional Mediterranean diet through the conservation of wild edible plants

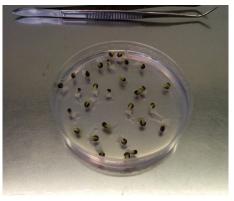
Promoting the sustainable use of the traditional Eastern Mediterranean diet, through the preservation of traditional knowledge and science-based conservation of wild edible plants in Jordan and Lebanon.

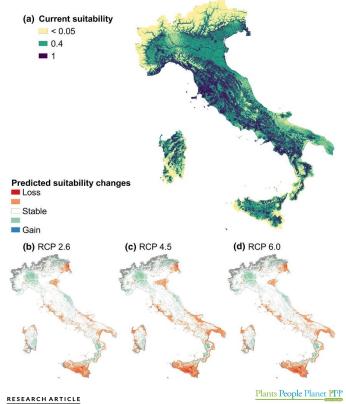
Plant Growth Regulation (2022) 97:175–184 https://doi.org/10.1007/s10725-021-00717-5

ORIGINAL PAPER

Physiological and environmental control of seed germination timing in Mediterranean mountain populations of *Gundelia tournefortii*

Efisio Mattana 10 · Pablo Gómez-Barreiro 20 · Nizar Youssef Hani 3 · Khaled Abulaila 4 · Tiziana Ulian 10




Next steps:

- Creation of heatmaps highlighting the distribution of Mediterranean WEPs across countries and bioregions, highligring food biodiversity hotspots
- Selection of priority species based on socioenvironmental attributes and initiation of fieldwork.
- Development of interviews, fieldwork, and production of ethnobotanical inventories in the Sulcis-Iglesiente and Central Barbagia subregions of Sardinia.
- Modeling the current and future distributions of priority species in Sardinia based on climate change scenarios using the optimal temperature germination ranges for seeds (MaxEnt).

Regeneration from seeds in a temperate native flora: A climate-smart and natural-capital-driven germination risk modelling approach

Article

Potential Distribution of *Cedrela odorata* L. in Mexico according to Its Optimal Thermal Range for Seed Germination under Different Climate Change Scenarios

Salvador Sampayo-Maldonado 10, Cesar A. Ordoñez-Salanueva 1, Efisio Mattana 2, Michael Way 20, Elena Castillo-Lorenzo 2, Patricia D. Dávila-Aranda 3, Rafael Lira-Saade 30, Oswaldo Téllez-Valdés 30, Norma I. Rodríguez-Arévalo 3, Cesar M. Flores-Ortiz 1,44* and Třiziana Ulian 20

To sum up

- Towards resilient food systems: Wild edible plants are crucial for building resilient food systems, offering innovative solutions to environmental and food security challenges, reinforcing the importance of conservation.
- Interdisciplinary research: Merging taxonomy, ethnobotany, and seed ecology provides holistic insights crucial for effective conservation and sustainable utilization. The integration of ethnobotany fosters a more inclusive and sustainable approach.
- **Data:** First comprehensive dataset on Mediterranean wild edible plants, significant impact for understanding edible plant biodiversity and cultural significance.

Thank you for your attention

benedetta.gori@unica.it

b.gori@kew.org