Forest management and conservation of the threatened lichen *Lobaria pulmonaria* in Mediterranean oak forests

Working Group for Ecology of the Italian Lichen Society

Luca Paoli^{1*}, Elisabetta Bianchi², Renato Benesperi², Giorgio Brunialti³, Luca Di Nuzzo², Zuzana Fačkovcová⁴, Luisa Frati³, Paolo Giordani⁵, Anna Guttová⁴, Deborah Isocrono⁶, Juri Nascimbene⁷, Chiara Vallese⁷, Sonia Ravera⁸

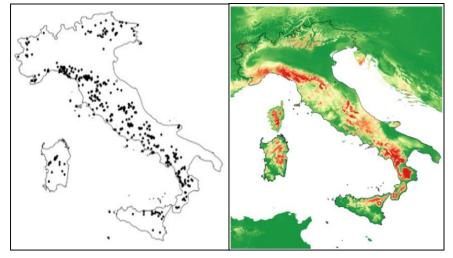
Department of Biology, University of Pisa (Italy), 2 Department of Biology, University of Florence (Italy), 3 TerraData Environmetrics (Italy),
Plant Science and Biodiversity Centre, Slovak Academy of Sciences (Slovakia), 5 DIFAR, University of Genoa (Italy), 6 Department of Agricultural, Forest and Food Science, University of Torino (Italy), 7 Department of Biological, Geological and Environmental Science, University of Bologna (Italy), 8 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (Italy)

*luca.paoli@unipi.it

Conservation Week

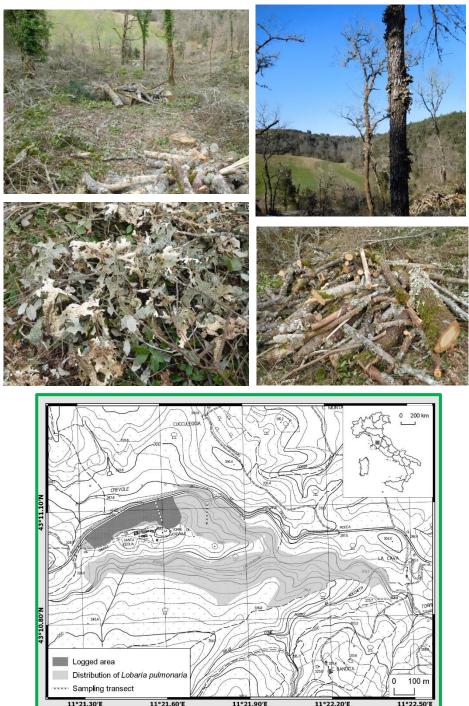
- Intensive forest management may threaten forest lichens, causing habitat fragmentation, degradation and loss.
- The epiphytic forest lichen Lobaria pulmonaria (L.) Hoffm. has suffered a general decline throughout Europe as a consequence of air pollution and intensive forest management, whose effects are expected to be further exacerbated by climate change (Nascimbene et al. 2016).
- Its occurrence and abundance are used as indicators of forest ecological continuity and for mapping forest sites worthy of conservation.
- Red-listed and legally protected in several European countries...

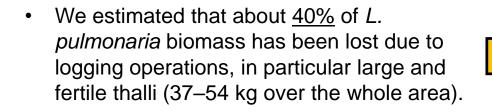
Not present Extremely rare Very rare Rare Rather rare Rather common Common Very common Extremely common


Distribution of *Lobaria pulmonaria* in Italy (Nimis 2016)

In **Italy**:

locally spread, but
habitats with fertile
populations rare –
confined to high quality
environment


- the species is **not** protected.



Current and predicted distribution of *Lobaria pulmonaria* in Italy (Nascimbene et al. 2016)

- After logging, lichens are exposed to a sudden microclimatic variation, consisting of an increase in solar radiation, temperature, wind and a reduction of humidity.
- **Prolonged dry conditions** may negatively affect photosynthetic activity, and hence the overall vitality of sensitive species, such as the forest lichen *Lobaria pulmonaria*.
- The **background** for this research was offered in 2016 by a logging for timber production which depleted a large population of *L. pulmonaria*, including hundreds of fertile thalli in Central Italy.
- Afterwards, *L. pulmonaria* from that area has been used as a model to investigate the stress induced by logging and to enhance better conservation practices, by means of a series of experiments carried out in Mediterranean mixed forests and beyond.

Impact of forest management on threatened lichens in Mediterranean oak forests 1) (Paoli et al., 2019 - iForest 12: 383-388)

- Changes in composition: after logging, most of the remaining L. pulmonaria thalli are small and sterile, while most of the largest ones (and fertile) disappeared.
- Decrease of the density of potential host trees (from ~ 1050 stems ha⁻¹ to ~ 165 ha⁻¹).
- Disappearing of other lichens of conservation concern.

46 % of remaining thalli reflect lower vitality after 1 year (analysis of chlorophyll a fluorescence emission).

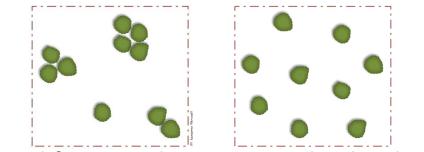
After cutting

7.3 kg ha⁻¹

Lobarina scrobiculata

Pannaria conoplea


Before cutting

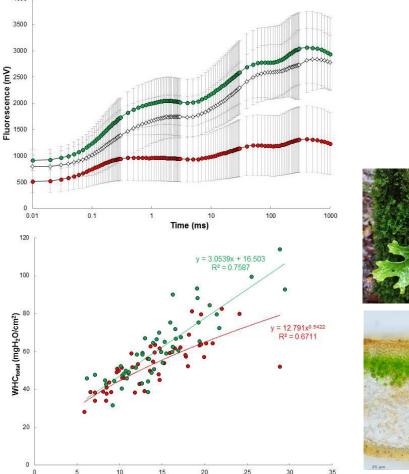

15.8–19.6 kg ha⁻¹

Degelia plumbea

2) effectiveness of forestry retention

retained-forest patches vs. retained-isolated trees

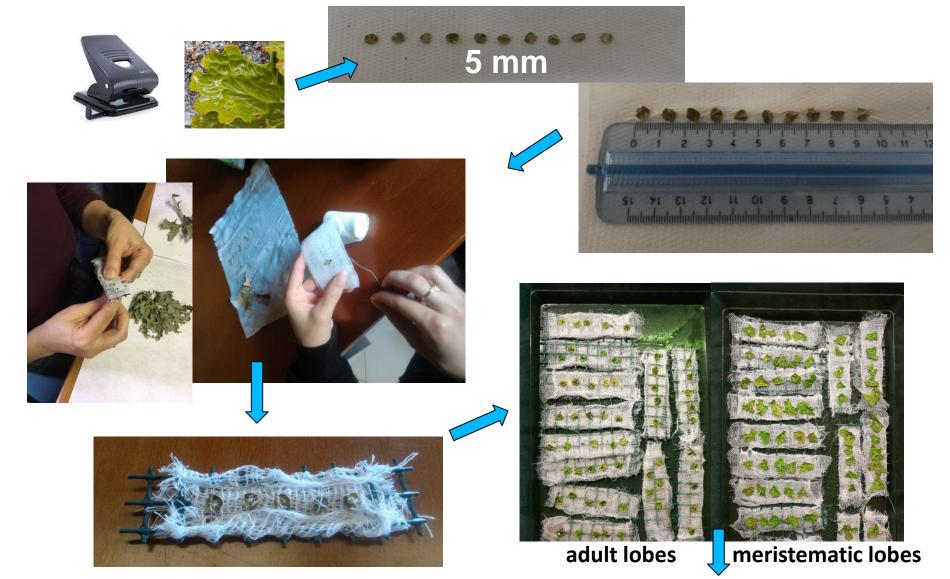
- 18 months after the conclusion of logging operations (February 2018).
- Assessment of the vitality of lichen thalli through the measurements of photosynthetic performances and thallus anatomy.
- Estimation of water holding capacity as one of the ecosystem services provided by the presence of healthy forest macrolichens.


thalli from retained forest patches

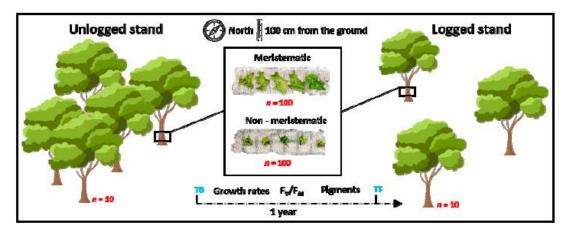
thalli from isolated trees

2) effectiveness of forestry retention (Fačkovcová et al., 2019 - iForest 12: 187-192)

- Chlorophyll a fluorescence transients of Lobaria pulmonaria from isolated trees (red) and forest patches (green). For comparison, the average curve of individuals in the unlogged area is given (white).
- Thalli from forest patches had higher water holding capacity (WHC) than those from isolated trees.
- Thalli from isolated trees had a 35% reduction of the photobiont layer.
- Hence, thalli remained on isolated trees were overall <u>thinner</u>, with <u>lower vitality</u> and lower <u>water holding capacity</u>. They have lower capacity to provide ecosystem services.
- On the other hand thalli from forest patches had performances comparable to those of healthy samples from unlogged forests.

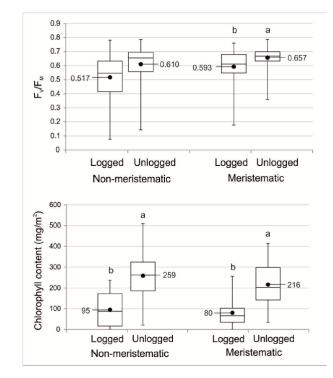


Retaining unlogged patches in Mediterranean oak forests may preserve threatened forest macrolichens

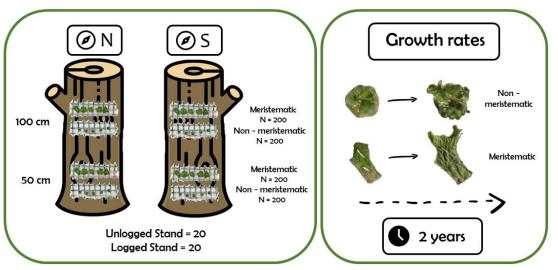


Simulating logging impact...

Investigation tools: micro-transplants

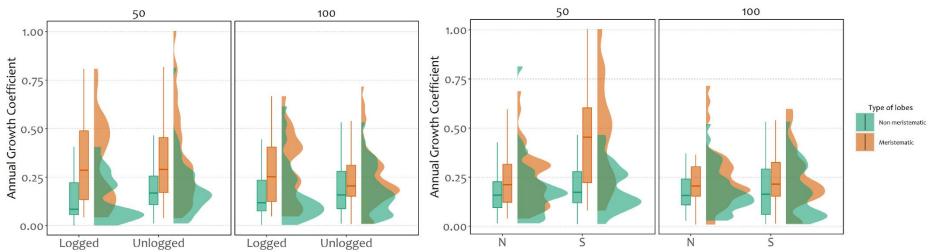


3) alterations in vitality and growth due to logging...focus on N oriented samples (Bianchi et al. 2020 - Forests, 11, 995)



- Transplants in the **unlogged stand** (both non-meristematic and meristematic) were characterized by **larger surfaces** and increase in the thallus area.
- Irrespective of forest management, meristematic fragments showed higher performances and growth rates (surface increase 0.16–0.18 cm² year⁻¹) as compared with non-meristematic fragments (0.02–0.06 cm² year⁻¹).
- For appropriate conservation strategies, it is necessary to **consider** the **life cycle** of the lichen: meristematic fragments have more chance to survive after logging.

4) influence of local microclimate modifications introduced after logging


(Di Nuzzo et al. 2022 - Plants, 11, 295)

- Combined effect of forest logging and microclimatic conditions.
- The translocation as a method for the *in situ* conservation of threatened lichen populations.
- Microclimatic alteration at the tree level after logging affects transplants growth: young thalli have a higher chance of survival.

Annual growth coefficient for **forest type** (logged and unlogged), type of lobes (non-meristematic and meristematic) and different heights from the ground (50 and 100 cm).

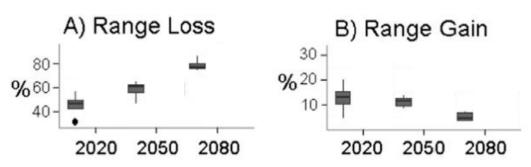
Annual growth coefficient in the **unlogged stand** according to type of lobes (meristematic and nonmeristematic), aspect and different heights from the ground (50 and 100 cm).

5) the efficacy of translocation for conservation purposes (Paoli et al., 2020 – Ecological Indicators 117, 106666)

Does air pollution influence the success of species translocation?

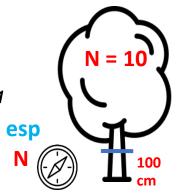
About 500 thalli of *L. pulmonaria* have been translocated to:

- oak forests (protected areas) in Tuscany that already host native populations;
- beech forests in the Western Carpathian Mts., that hosted native populations in the past.
- Air pollution influences the success of lichen translocation for conservation purposes.
- The translocation of *L. pulmonaria* is effective only in unpolluted environments.
- Higher contents of heavy metals in translocated thalli reflect their lower survival.
- Current air quality in Central Europe limits recolonization by sensitive lichens.



Habitat loss and global change

Current distribution of *Lobaria pulmonaria* in Italy (Nascimbene et al. 2016) Predicted changes in distribution across the time (Nascimbene et al. 2016):



- steep gradient of increasing range loss across time
- the species is facing a high extinction risk associated with reduction of their range

The responses of lichens to habitat changes caused by invasive trees are poorly understood.

The main question:

Can forests composed of invasive *Robinia pseudoacacia* represent future habitats for *L. pulmonaria*?

5 lobes for a tree

Lobaria exposed on: 10 trees *Robinia* 10 trees *Castanea*

Forest management and conservation of the threatened lichen *Lobaria pulmonaria* in Mediterranean oak forests

Working Group for Ecology of the Italian Lichen Society

Luca Paoli^{1*}, Elisabetta Bianchi², Renato Benesperi², Giorgio Brunialti³, Luca Di Nuzzo², Zuzana Fačkovcová⁴, Luisa Frati³, Paolo Giordani⁵, Anna Guttová⁴, Deborah Isocrono⁶, Juri Nascimbene⁷, Chiara Vallese⁷, Sonia Ravera⁸

Department of Biology, University of Pisa (Italy), 2 Department of Biology, University of Florence (Italy), 3 TerraData Environmetrics (Italy),
Plant Science and Biodiversity Centre, Slovak Academy of Sciences (Slovakia), 5 DIFAR, University of Genoa (Italy), 6 Department of Agricultural, Forest and Food Science, University of Torino (Italy), 7 Department of Biological, Geological and Environmental Science, University of Bologna (Italy), 8 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo (Italy)

*luca.paoli@unipi.it

Conservation Week

