Desiccation tolerance, longevity and storage at sub-zero temperatures of uni- and multicellular spores of the moss family Orthotrichaceae (Bryophyta)

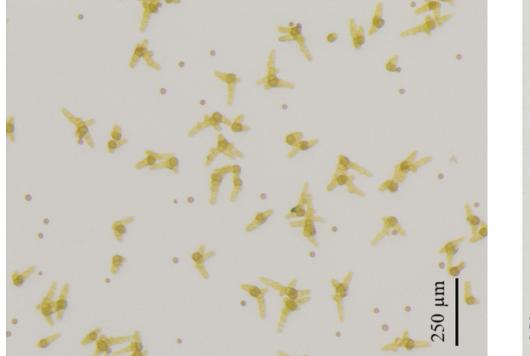
Carlos Eced, Aleksandra Ruzic, Ricardo Garilleti, Belén Albertos & Daniel Ballesteros

TABLE OF
CONTENTSIntroductionCONTENTS• Objectives

Material and methods

Results

Conclusions


INTRODUCTION

Bryophyte spores

- Generally unicellular.
- Less commonly, there are also **multicellular spores**, originating from "**endosporic germination**".
- It originates very large spores of various shapes.

Unicellular vs. multicellular spores

Germinating **unicellular** spores of *Lewinskya tasmanica*

Germianted **multicellular** spore of *Ulota membranata*

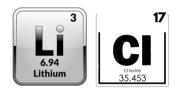
Desiccation tolerance, longevity and sub-zero temperature tolerance

Unicellular spores

- Desiccation tolerant.
- Relatively long-lived in dry state.

Multicellular spores

- Desiccation tolerance (DT) unkown.
 - **Hypoth. 1:** poikilohydric DT gametophyte \longrightarrow DT spore.
 - Hypoth. 2: DT lost during endosporic germination.
- Scarce development of *ex situ* conservation techniques of bryophyte spores.
- Understanding **sub-zero temperature tolerance** (alongside DT and longevity) is the first step.


OBJECTIVES

- 1. To determine the **viability** of uni- and multicellular spores preserved in herbarium sheets for years.
- 2. To characterise the **desiccation tolerance** and **longevity** of uni- and multicellular spores in the dry state.
- 3.To characterise the **tolerance** to **sub-zero temperatures** of these spores in order to obtain keys for their *ex situ* conservation.

MATERIAL AND METHODS

- Germination of spores at 20 °C on Knop Medium solidified with 1% agar.
- Herbarium sheets (4 7 years).
- Dry storage.

25 diciembre 2016

X Región de Los Lagos. Prov. de Palena: Comuna de Chaitén -Nacional Corcovado, portezuelo Moraga, 43°20'59'5 072°24'04'W

Ribes magellanicun

rilleti 2016-193b & F. Lara

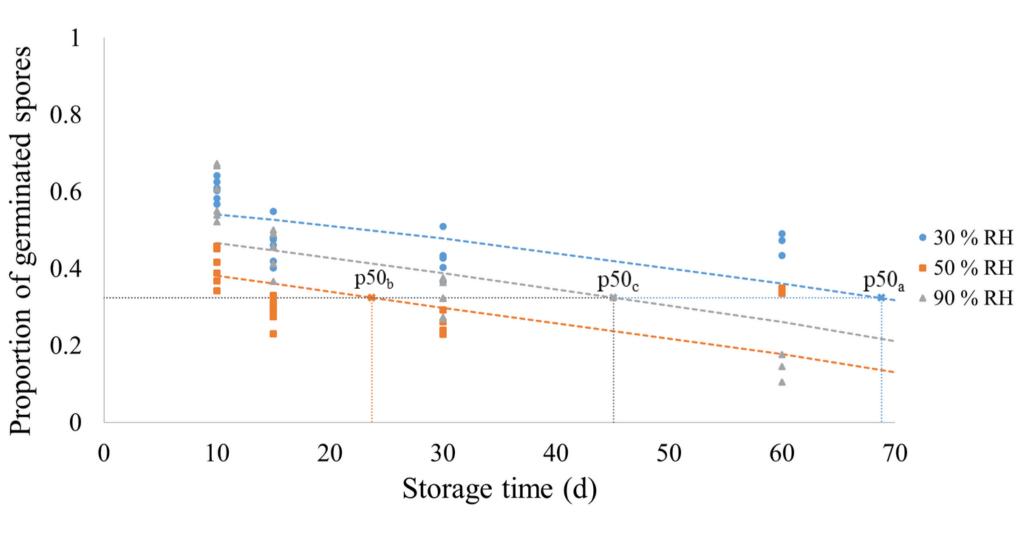
 Sub-zero storage: spores equilibrated at different RH were stored at -20 and -80 °C freezers.

RESULTS

Viability of *Ulota* spp. spores preserved in herbarium sheets

Spores from the studied species were not viable after
 4 - 7 years of conservation under herbarium conditions.

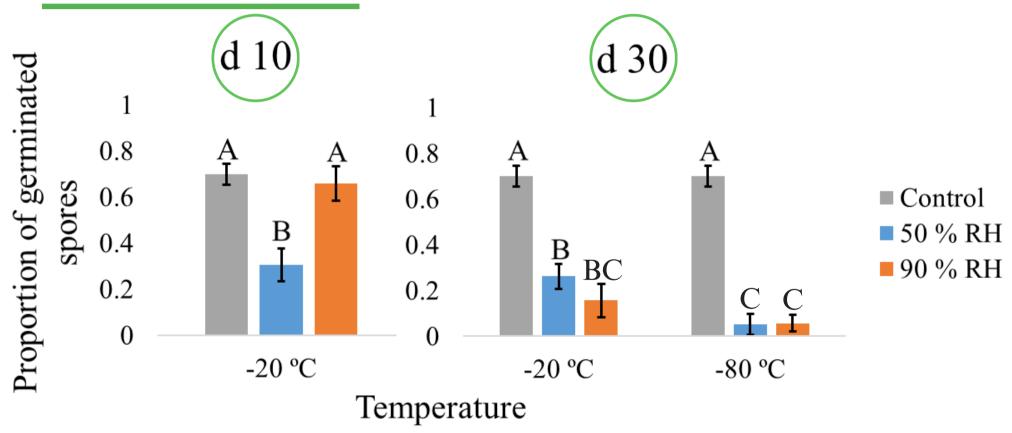
Desiccation tolerance and longevity in dry stage of the Ulota membranata and Lewinskya tasmanica spores


- Spores of both species germinated after 30 days of dry storage ------> Desiccation tolerant.
- **Significant loss of viability** over time and RH treatments?
 - \circ Yes: Lewinskya tasmanica \longrightarrow GLM
 - No: Ulota membranata

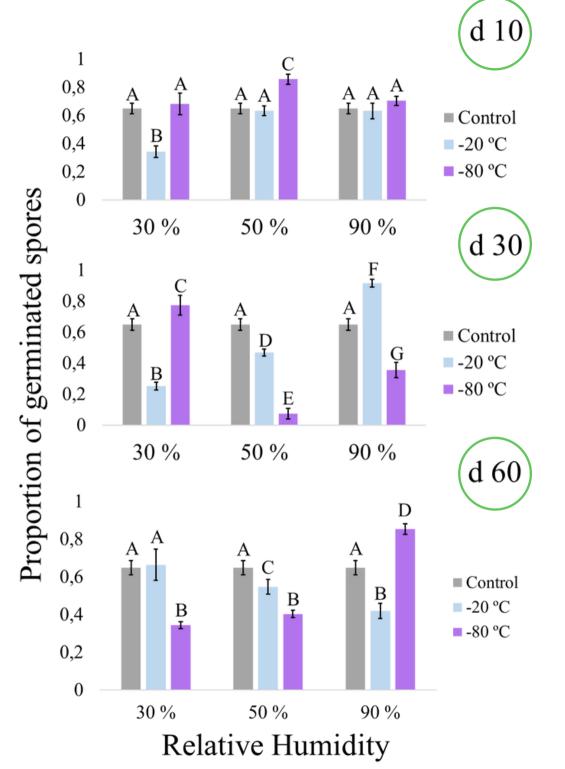
→• ANOVA + Tuckey-B

Ulota membranata	10 (d)	15 (d)	30 (d)
30 % RH	68.3 % (A)	-	49.6 % (BC)
50 % RH	15.0 % (C)	46.1 % (B)	44.9 % (B)

GLM analysis: calculation of p50


Comparative longevity

p50 (d)					
Species	30 % RH	50 % RH	90 % RH		
I awing taging arrist	68.8 ^a	23.7 ^b	45.1 ^c		
Lewinskya tasmanica	[44, 175]	[-4, 51]	[25, 103]		
Ulota membranata	Ns	Ns	-		
Equisetum hyemale *	5.9 ± 0.1	7.3 ± 0.1	-		
Osmunda regalis *	39 ± 1	31 ± 1	-		
Matteuccia struthiopteris *	119 ± 1	-	-		
Dicksonia macrocarpa *	175 ± 2	143 ± 1	-		
Polystichum aculeatum *	872 ± 30	993 ± 29	-		
Pteris vittata *	4,781 ± 199	4,650 ± 180	-		


* Ballesteros, D., Hill, L. M., Lynch, R. T., Pritchard, H. W., & Walters, C. (2019). Longevity of preserved germplasm: the temperature dependency of aging reactions in glassy matrices of dried fern spores. *Plant and Cell Physiology*, *60*(2), 376–392.

Sub-zero temperature tolerance in spores of Ulota membranata and Lewinskya tasmanica

Lewinskya tasmanica

DISCUSSION

Viability of *Ulota spp*. spores preserved in herbarium sheets

- The longevity of the spores of the studied species is less (than 4 7 years under herbarium conditions.
 - Less long-lived than spores of other bryophytes studied by Malta (1921, 1922) and other species of the family Orthotrichaceae studied by the work team.
- Spores from sheets of these ages are not suitable for germination studies.

Desiccation tolerance and longevity in dry stage of the Ulota membranata and Lewinskya tasmanica spores

- Both unicellular spores of *L. tasmanica* and multicellular spores of *U. membranata* are **desiccation tolerant**.
 Spores of DT.
- In *U. membranata* no significant drops in germination were detected in the probit analysis ——> Longer lived?
- *L. tasmanica* spores aged the least in the driest conditions, followed by the wettest.
 - <u>Dry conditions</u>: vitrification of cytoplasm.
 - <u>Wet conditions</u>: cell repair.
 - Similar longevity to chlorophyllous fern spores.

Sub-zero temperature tolerance in spores of Ulota membranata and Lewinskya tasmanica

- Both unicellular spores of *L. tasmanica* and multicellular spores of *U. membranata* **tolerate freezing** if their water content is low.
- Also if the water content is high.
 - Greatest damage in *U. membranata*.
 - Best condition for *L. tasmanica*.
- Multicellular spores of *U. membranata* presented more freezing damage than unicellular spores of *L. tasmanica*.
- More research is needed to determine optimal *ex situ* conservation conditions.

CONCLUSIONS

- 1. Spores of the species studied present short-longevity, comparable to chlorophyllous fern spores. Spores of U. membranata appear to be longer-lived than L. tasmanica spores.
- 2. Uni- and multicellular spores are desiccation tolerant. Endosporic germination ≠ loss of DT.
- **3.** Both uni- and multicellular spores **tolerate storage at sub-zero temperatures**.

Multicellular spores present **more freezing damage**. Unicellular spores were better preserved with pre-equilibration at 90 % RH.

Thank you for your time

Any questions?