Comparative longevity of Bryophyte spores: influence of storage conditions, spore maturity stage, and plant ecology

Aleksandra Ruzic, Carlos Eced, Ricardo Garilleti, Belen Albertos, Daniel Ballesteros

4th Mediterranean Plant Conservation Week

VALÈNCIA | 23-27 OCTOBER | 2023

VNIVER^SITAT ® VALÈNCIA Jardí Botànic

Introduction

□ HOW LONG DO BRYOPHYTE SPORES REMAIN VIABLE?

Not much information regarding their longevity Important for efficient conservation in gene/spore banks

□ HOW DO WE DETERMINE SPORE LONGEVITY?

 $\mathbf{P_{50}}$ is the time it takes for viability to fall to 50%

 Can be used to compare the relative longevity
 of bryophyte spores with that of seeds and fern spores aged at comparable conditions

□ TO DETERMINE THE RELATIVE LONGEVITY OF BRYOPHYTE SPORES AGED AT DIFFERENT STORAGE CONDITIONS

□ TO UNDERSTAND THE INFLUENCE OF THE MATURITY STAGE IN THE SPORE LONGEVITY POTENTIAL

□ TO INVESTIGATE IF THE LONGEVITY POTENTIAL IS DETERMINED BY THE SPECIES ECOLOGY

Materials and Methods

© Michael Lüth

• Epiphyte

Lewinskya acuminata (H. Philib.) F. Lara, Garilleti & Goffinet

© Michael Lüth

© Stefan Gey

• Epiphyte

Ulota crispula Bruch

© Hugues Tinguy

- Terricolous
- Different maturity of spores

Funaria hygrometrica Hedw.

• Epiphyte

Lewinskya iberica (F.Lara & Mazimpaka) F.Lara, Garilleti & Goffinet

Materials and Methods

Accelerated Ageing Conditions

60% RH + 45° C

Knop medium

Germination at 20°C and 12h photoperiod

 $Viability = \frac{Germinated\ spores}{Total\ number\ of\ sown\ spores}$

Dry storage

15% RH + 20°C

Mead and Gray's (1994) correction was used for U. crispula and L. iberica to compensate for the low initial viability of the spores.

□ SPORE LONGEVITY INCREASED WHEN STORED IN DRY CONDITIONS

□ BRYOPHYTE SPORES LOOSE VIABILITY RELATIVELY FAST COMPARED TO CATEGORIES DETERMINED FOR SEEDS

Species	Ki	σ	P_{50} (Ki x σ) days
U. crispula*	0.88	0.5	0.44 d
L. acuminata	0.57	2.65	1.51 d
L. iberica*	0.68	1.3	0.884 d
F. hygrometrica	0.92	6.2	5.704 d

**Mead and Gray's (1994) correction was used for U. crispula and L. iberica to compensate for the low initial viability of the spores.*

Following the interpretation of P_{50} by Mondoni et al. (2011):

- Values of ≤ 2 days → transient or very short-lived
- Values of > 2 and ≤ 10 days → shortlived
- Values of > 10 days and ≤ 100 → medium longevity

□ BROWN (MATURE) SPORES REMAINED VIABLE THE LONGEST, WHILST GREEN (IMMATURE) SPORES THE SHORTEST

Maturity	Ki	σ	P_{50} (Ki x σ) days	
Green*	0.56	6.44	3.606 d	
Yellow*	1.12	3.56	3.987 d	37 d Accelerated
Brown	0.92	6.2	5.704 d) ageing
Green*	0.62	93.79	58.150 d)
Yellow	0.72	107.08	80.31 d	Dry storage
Brown	0.95	158.5	150.575 d	J

 $*P_{50}$ values calculated with Mead and Grey (1994) correction

□ BRYOPHYTE SPORE LONGEVITY IS RELATIVELY SHORT AT ALL AGEING CONDITIONS USED WHEN COMPARED TO SEEDS AND FERN SPORES

Species	P ₅₀
Ficus exasperate Vahl ^a	76.6 d
F. salicifolia Vahl ^a	33.8 d
Calothamnus graniticus Hawkeswood ^a	256.3 d
Caiophora latenitia Benth ^a	4.3 d
Silene gallica L. ^a	114.7 d
Streptocarpus cyaneus S. Moore ^a	0.9 d
Pteris vittata (non-chlorophyllous spores) ^b	4781 d
Christella dentata (non-chlorophyllous spores) ^b	310 d
Matteuccia struthiopteris (chlorophyllous spores) ^b	119 d
Todea barbara (chlorophyllous spores) ^b	15 d

^a Species of vascular plants subjected to accelerated ageing, extracted from Probert et al., 2009.
^b Species of pteridophytes that were stored in comparable dry conditions, extracted from Ballesteros et al., 2018, 2019.

Conclusions

□ THE PRESENCE OF CHLOROPHYLL IN BRYOPHYTE SPORES MAY DETERMINE THEIR RELATIVE SHORT LONGEVITY

□ SHORTER LONGEVTY MAY BE AN EVOLUTIONARY TRADE OFF IN THE EPIPHYTIC SPECIES TESTED

Epiphytes have hygrochastic spore dispersal \rightarrow Facilitates safe-emplacement strategy

Terricolous bryophytes have xerochastic dispersal \rightarrow Long-distance dispersal

□ THE DREGREE OF SPORE LONGEVITY IS DETERMINED BY THE MATURITY STAGE

Thank you!