

Using a multidisciplinary approach for phytoremediation of abandoned mine site: the case study of Sardinia

Boi, M.E.,¹ Cannas, C.,² Cappai, G.,³ Carucci, A.,³ De Giudici, G.,² Medas, D.,² Porceddu, M.,¹ Tamburini, E.⁴ & Bacchetta, G.¹

¹ Centre for Biodiversity Conservation (CCB), Sardinian Germplasm Bank (BG-SAR), Department of Life and Environmental Sciences, University of Cagliari, Italy ² Department of Chemical and Geological Science, University of Cagliari, Italy ³ Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy ⁴ Department of Biomedical Sciences, University of Cagliari, Italy

> 4th Mediterranean Plant Conservation Week (4MPCW) 23 - 27 October 2023 Valencia

Mediterranean biogeographical region is considered as **one of the most historically devoted region to mining exploitation** since pre-roman times.

Introduction

Mine waste materials are unfavourable environments for plant life:

- absence of top soil;
- Iack of nutrients (K, N, and P);
 - lack of organic matter;
- high concentration of metal(loid)s.

Introduction – Restoration of abandoned mining areas

Introduction – The Sardinian mine context

Sardinia was one of the most important mine poles in Europe during the 20th century.

However, huge quantities of waste materials were left abandoned without reclamation.

Different native species are able to grow in these environments and suitable for phytoremediation

The multidisciplinary approach

A multidisciplinary approach for seeing the matter from different points of view.

The Sardinian experience

Along the last 15 years, several studies were carried out on the Sardinian mine context using a multidisciplinary approach.

Germination tests

Pistacia lentiscus L.

Helichrysum microphyllum Cambess. subsp. tyrrhenicum Bacch., Brullo & Giusso

The field sampling campaigns

- Fundamental step in order to know the behavior of a plant species.
- On specimens of *Pistacia lentiscus* (Concas et al. 2015) and *Helichrysum microphyllum* subsp. *tyrrhenicum* (Bacchetta et al. 2018).
- Metal tolerant species.
- Suitable for phytostabilization

Mineralogical investigation

- Studies on the process occurring at the substrate roots interface.
- Pistacia lentiscus and Helichrysum microphyllum subsp. tyrrhenicum roots take up Zn, Al and Si from rhizosphere minerals, building biominerals (Boi et al. 2020; De Giudici et al. 2015)
- Mechanism of exclusion from the excess of Zn play by these two species.

Helichrysum microphyllum subsp. tyrrhenicum

Pistacia lentiscus

- In situ experiments are fundamental tools to check the potential of a species in real environments (two-year study or more).
- Application of soil amendments (i.e., compost, zeolite and their combinations).
- Suitability of *Pistacia lentiscus* for phytostabilization and environmental restoration (Bacchetta et al. 2012).
- Amendments increased the survival of the species.

The ex situ experiments

- Ex situ experiments help to optimize phytoremediation actions, taking advantages of controlled conditions.
- Implementation of compost or other soil amendments.
- Bioaugmentation and administration of selected Plant Growth Promoting Bacteria (PGPB).
- Compost and bacterial strains decreased the metal uptake and improved the survival of plants (Bacchetta et al. 2015; Boi et al. 2021; Tamburini et al. 2017).

Helichrysum microphyllum subsp. tyrrhenicum

Pistacia lentiscus

Germination tests

- Gemination tests under metal(loid)s stress help to develop remediation action starting from seeds.
- Seeds of *Helichrysum microphyllum* subsp. tyrrhenicum were subjected to Zn, Pb and As stress.
- Seeds germinated under high concentrations of Zn and Pb, without the inhibition of the process (Boi et al. 2020).
- Speciation effect on germination and seedling development when arsenicals are used (Boi et al. 2022).

Conclusion

The **application of a multidisciplinary approach can** reveal many details:

- the behavior of a species (tolerant, accumulator, hyperaccumulator);
- the mechanism of plant survival, i.e., biominerals;
- interaction with microorganisms at root-substrate interface;
- the ability to resist to metal(loid)s stress during germination and seedlings development;
- the effect of metal(loid)s speciation during these step.

This **same approach** can also be applied:

- in other Mediterranean mining contexts;
- with different plant species.

Ptilostemon casabonae (L.) Greuter

Linum mulleri Moris.

Iberis integerrima Moris

Thank you for your attention

