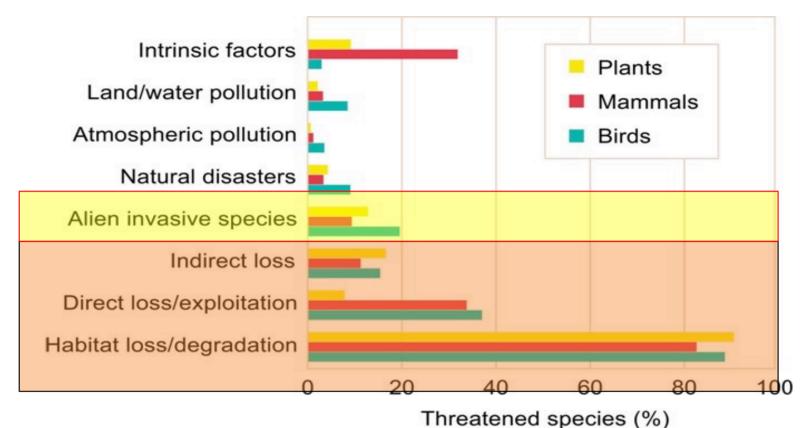


INVASIVE ALIEN SPECIE IN THE MEDITERRANEAN ISLANDS: THE CARE-MEDIFLORA PROJECT

2nd Mediterranean Plant Conservation Week Session 2 - *In situ* plant species conservation: technical aspects, methodology and monitoring

CARE


MEDIFLORA

IUCN

*Department of Biological, Geological and Environmental Sciences

via A. Longo, 19 - Italy g.giusso@unict.it

A major threat to biodiversity Invasive Alien Species

- Invasion by AS of new territories is a phenomenon of global
- IAS, as one of the greatest drivers of biodiversity loss, pose a severe threat to ecosystem integrity and function

GLOBALIZATION and EXPANSION OF HUMAN POPULATIONS

what are Invasive Alien Species

AS, often referred to as non native, non indigenous or exotic species, are plants, animals, fungi and micro-organisms that have been transported unintentionally or intentionally across ecological barriers and have established themselves in areas outside their natural range

Not all alien species are harmful, but many can become aggressively invasive, spreading rapidly across the natural environment, interacting with native species and posing threats to native ecosystems

How many Invasive Alien Species

4.979 in 2016 (after RBG Kew. 2016. The State of the World's Plants Report. Royal Botanic Gardens, Kew)

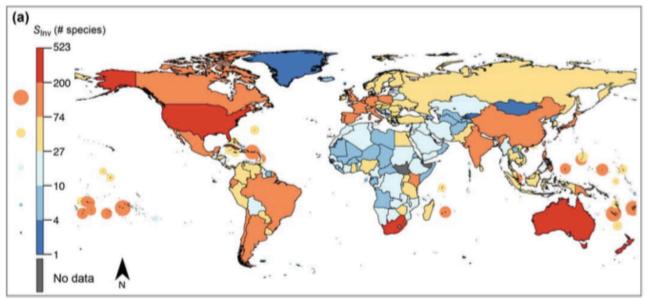
6.075 in 2017 (after Willis, K.J. (ed.) 2017. State of the World's Plants Report. Royal Botanic Gardens, Kew)

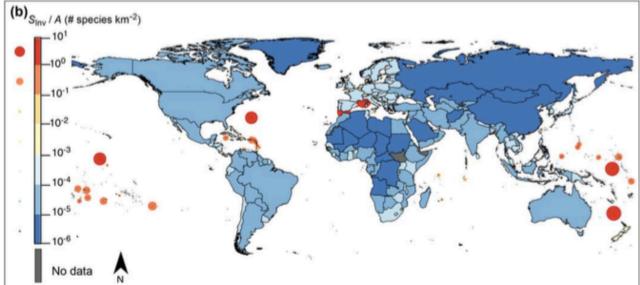
Main features Invasive Alien Species

- Rapid reproduction and growth
- High dispersal ability (ability to move from one place to another)
- Ability to adapt physiologically to new conditions
- Ability to survive in a wide range of environmental conditions

For becoming a "good" invader, a species must follow three steps: introduction, establishment and

...luckily invasion is linked to a series of low-probability events, whose occurrence is enhanced in disturbed habitats (e.g. urban areas, coastal

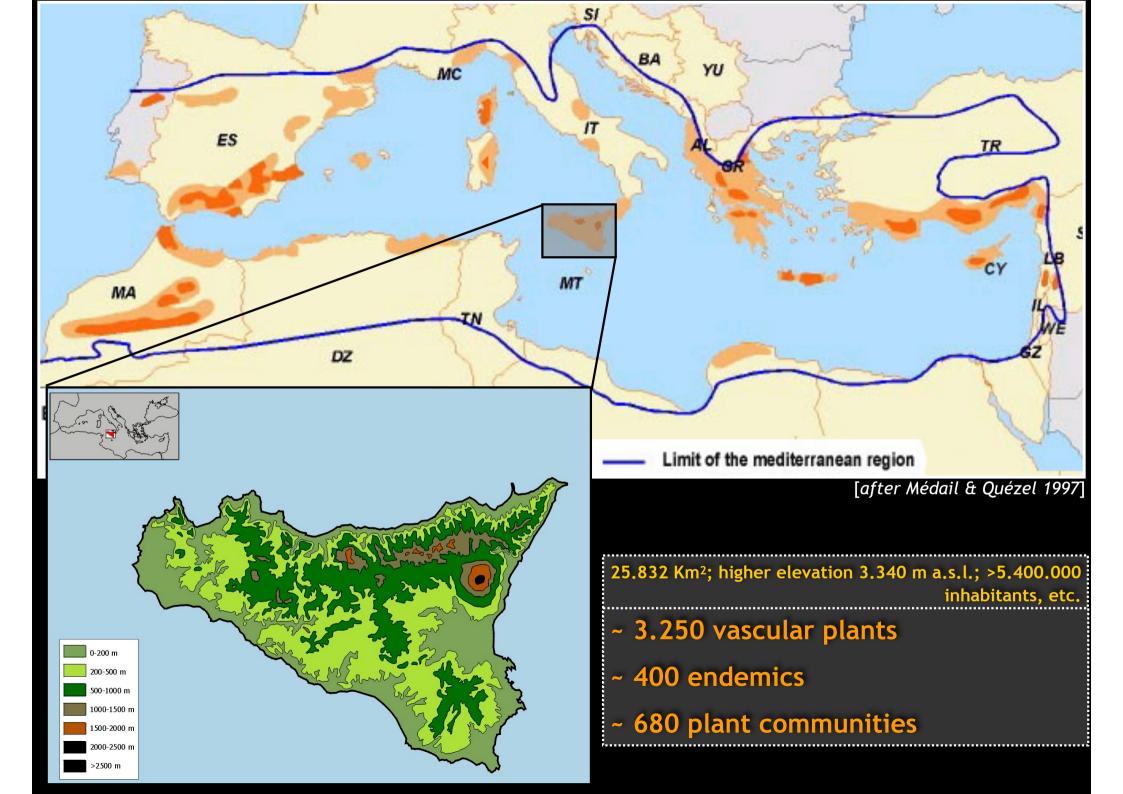




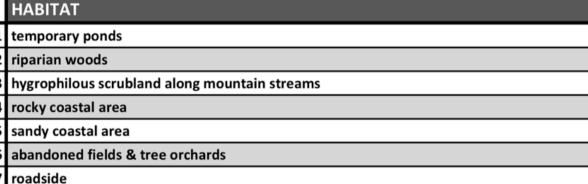
Mapping the global state Invasive Alien Species

[after Turbelin et al. (2017]

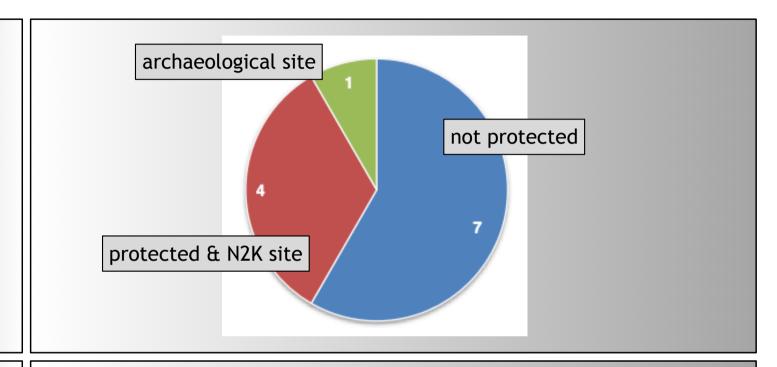
Geological, geophysical and climatic factors made the Mediterranean one of the most biodiverse region of the world. The same factors (geological, climatic and human) have facilitated, in combination with the volume, intensity and range of human activities, biological invasions, thus making the Mediterranean, with its geographical specificities, exceptionally susceptible to invasions by plants.


Human-induced habitat modifications over the last century accelerated this process, and the impacts of invasive species have been significantly enhanced

IUCN


	FAMILY	TAXON	LIFE FORM	ORIGIN	
1	Poaceae	Paspalum distichum	Hemycryptophyte	America	
2	Berberidaceae	Mahonia aquifolium	Chamephyte	NW America	
3	Fagaceae	Quercus rubra	Phanerophyte	NE America	
4	Pinaceae	Pinus sp. pl.	Phanerophyte	•	
5	Pinaceae	Abies sp. pl.	Phanerophyte	-	
6	Fabaceae	Acacia saligna	Phanerophyte	SW Australia	
7	Cactaceae	Opuntia ficus-indica	Phanerophyte	Tropical America	
8	Aizoaceae	Carpobrotus edulis	Hemycryptophyte	South Africa	
9	Asteraceae	Cirsium arvense	Geophyte	Throughout Europe	
10	Cactaceae	Opuntia maxima	Nanophanerophyte	America	
11	Cactaceae	Opuntia ammophila	Nanophanerophyte	America	
12	Cactaceae	Opuntia subulata	Nanophanerophyte	America	
13	Verbenaceae	Lantana camara	Nanophanerophyte	America	

No. of action(s)	ALTITUDINAL RANGE (m a.s.l.)
8	0-100
3	300-700
1	1600-1700



where...

when...

from July 2017 until October 2018

how...

manually (or chemically in 1 case) ...on ca. 35.000 sqm

why...

	FAMILY	TAXON	ACTION	IUCN	DISTRIBUTION	ISLAND
1	Elatinaceae	Elatine brochonii Clavaud	increasing the area	VU	w	Corse
2	Rhamnaceae	Rhamnus persicifolia	translocation (new population)	EN	narrow endemic	Sardinia
3	Asteraceae	Centaurea magistrorum	increasing the area & fencing	CR	narrow endemic	Sardinia
4	Asteraceae	Tripolium pannonicum	translocation (new population)	DD	w	Sicily
5	Caryophyllaceae	Dianthus rupicola subsp. rupicola	translocation (new population) & fencing	LC	narrow endemic	Sicily
6	Plumbaginaceae	Limonium creticum	translocation (new population) & fencing	DD	narrow endemic	Crete
7	Resedaceae	Reseda minoica	increasing the area & fencing	DD	w	Crete
8	Fabaceae	Astragalus suberosus	translocation (new population)	EN	w	Cyprus
9	Asteraceae	Anthemis tomentosa	increasing the area	EN	w	Cyprus
10	Brassicacae	Maresia nana var. glabra	population reinforcement	CR	narrow endemic	Cyprus
11	Asteraceae	Crypsis hadjikyriakou	translocation (new population)	CR	narrow endemic	Cyprus
12	Ranunculaceae	Ranunculus bullatus	translocation (new population)	VU	w	Mallorca

replacing...

Before...

monitoring ...

mid- and long-term monitoring plans

- Alien plant distribution (distribution maps, photos, etc.)
- Alien plant control measures implemented & success rate achieved (e.g. resprouting, seed bank IAS, etc..)
- Evaluate presence/abundance of target species (in case of combined actions, e.g. translocations, increasing the area for, etc.)
- Evaluate re-vegetated areas (in case of combined natural vegetation restoration actions) in order to detect and quantify the development of other species (e.g. transects, phytosociologal relevés, etc.)

II Mediterranean Plant Conservation Week La Valetta (Malta), 12-16 November 2018

Train, inform and communicate...

- local experiences shared among partners
- Involving of local authorities and protected area managers
- Increase public awareness and education

Il Mediterranean Plant Conservation Week La Valetta (Malta), 12-16 November 2018

Conclusive remarks...

- reduction/disappear (local) of habitats
- habitat alteration (e.g. soil properties, plant hybridization, pests, vegetation structure, species composition, endemic species, etc.)
- human health
- economy

PREVENTING NEW INVASIONS

EARLY DETECTION OF NEW INVADERS (CITIZEN SCIENCE?)

RAPID RESPONSE TO NEW INVADERS

ARTICLE

Received 2 Sep 2015 | Accepted 7 Jul 2016

Global threats fr twenty-first cent capacities

Regan Early¹, Bethany A. Bradley², Je Patrick Gonzalez^{8,9}, Edwin D. Grosh & Andrew J. Tatem 14,15,16

CLOSER COLLABORATION BETWEEN INSTITUTIONS AND ORGANISATIONS WORKING WITH IAS

SCIENTIFICALLY-BASED RESEARCHES, INCLUDING LONG-TERM MONITORING PLAN FOR EVALUATING SUCCESS

MORE EFFECTIVE EXCHANGE OF RESEARCH FINDINGS AND PRACTICAL EXPERIENCES BETWEEN SCIENTISTS AND EXPERTS WHO ARE MANAGING NATURAL AREAS AND IMPLEMENTING INTERVENTIONS, TO REDUCE THE GAP BETWEEN KNOWING AND **DOING**

Thanks for your attention...

